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Plan of talk
▶ Prereqs: multiview geometry at level of Hartley-Ziss. No algebraic geometry!

▶ Part 1 (2:30 – 3:00 PM): Give an overview of how homotopy continuation
works from the user’s perspective and some of the general theory, illustrated w/
software demos on familiar examples from 3D vision:
1. Perspective 3-Point
2. Five-point essential matrix estimation

▶ Coffee break (3:00 – 4:00 PM): Come ask us questions!
▶ Part 2 (4:00 – 4:30 PM): Showcase some novel applications (and ideas):

3. 3-view autocalibration w/ partially known intrinsics (minimal relaxation)
3. Point-line absolute pose (monodromy group)
5. Radial camera relative pose (minimal solver)

▶ Why should you care about homotopy continuation?
1. Answer from previous talks: There is a general need for polynomial solvers in 3D

vision due to minimal problems being solved in RANSAC. For plenty of problems,
homotopy continuation might be the only method that works.

2. I would add the following: For plenty of other problems, symbolic computation
methods may work better. Still, we can uncover useful information from offline HC
runs that can be harder to detect symbolically (eg. symmetry.)
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My computer vision conference papers:
▲, ⬤ PLMP (D., Kohn, Leykin, Pajdla), ICCV 2019.

■, ⬤ TRPLP (Fabbri, D., Fan, ... Kimia, ...) CVPR 2020.

▲, ⬤ PL1P (D., Kohn, Leykin, Pajdla) ECCV 2020.

■, ⬤ Learning to Solve Hard Minimal Problems (Hruby, D., Leykin, Pajdla) CVPR 2022.

■, ◆, ⬤ 4-view Geom. w/ Unknown Radial Dist. (Hruby, Korotynskiy, D., ...) CVPR 2023.

▲, ■, ⬤ Minimal Persp. Autocalibration (Porfiri dal Cin, D., Magri, Pajdla) CVPR 2024.

■, ◆, ⬤ Efficient solution of point-line absolute pose (Hruby, D., Pollefeys) CVPR 2024.

Legend

▲: Theory paper: classification of minimal problems.

■: Paper with practical minimal solver(s)

◆: Results relied on Galois/monodromy groups

⬤: Results relied on numerical homotopy and monodromy computation.

https://openaccess.thecvf.com/content_ICCV_2019/papers/Duff_PLMP_-_Point-Line_Minimal_Problems_in_Complete_Multi-View_Visibility_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Fabbri_TRPLP_-_Trifocal_Relative_Pose_From_Lines_at_Points_CVPR_2020_paper.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710171.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Hruby_Learning_To_Solve_Hard_Minimal_Problems_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Dal_Cin_Minimal_Perspective_Autocalibration_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Hruby_Efficient_Solution_of_Point-Line_Absolute_Pose_CVPR_2024_paper.pdf


Warm-up: Perspective 3-Point

⎛
⎜⎜⎜⎜⎜⎜
⎝
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0
0
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⎞
⎟⎟⎟⎟⎟⎟
⎠

λ1 p1=(R t)q1

λ3 p3=(R t)q3

λ2 p2=(R t)q2

Given: image points p1,p2,p3 ∈ P2
, corresponding world points q1,q2,q3 ∈ P3

.

(Normalize so that qi = (qi1 qi2 qi3 1)T , and pi
T
pi = 1.)

Recover: a calibrated camera matrix (R t) and scalar depths λ1, λ2, λ3 w/

λipi = (R t)qi .
Classical approach of Grunert (1847): eliminate the camera to get 3 equations in 3

unknowns λ = (λ1, λ2, λ3), with 8 = 2
3
solutions: for 1 ≤ i < j ≤ 3,

λi
2
+ λj

2
− 2 (pi Tpj)λiλj = (qi − qj)T (qi − qj).



Grunert’s equations define a parametric polynomial system:

f( λ1, λ2, λ3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
“variables”, λ

;q1,q2,q3,p1,p2,p3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
“parameters”, q,p

) =
⎛
⎜⎜⎜⎜
⎝

λ1
2 + λ2

2 − 2 (p1Tp2)λ1λ2 − (q1 − q2)T (q1 − q2)
λ1

2 + λ3
2 − 2 (p1Tp3)λ1λ3 − (q1 − q3)T (q1 − q3)

λ2
2 + λ3

2 − 2 (p2Tp3)λ2λ3 − (q2 − q3)T (q2 − q3)

⎞
⎟⎟⎟⎟
⎠

Main ideas behind homotopy continuation:

1. To solve a system for some parameter values of interest q
1
,p

1
, it helps if we

already know solutions for some other parameters q
0
,p

0
.

2. Suppose we had a differentiable homotopy function H(λ; t) such that

H(λ; 0) = f(λ;q0
,p

0), H(λ; 1) = f(λ;q1
,p

1).
Then we can solve H(λ; t) = 0 for λ as an implicit function of t in a
neighborhood of any point where the 3 × 3 Jacobian ∂H

∂λ
is nonsingular :

H = 0 ⇒
∂

∂t
H =

∂H

∂λ

∂λ

∂t
+

∂H

∂t
= 0

⇒ λ = −∫ ((∂H
∂λ

)
−1 ∂H

∂t
) dt
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Main algorithm Parameter homotopy for a square system f with parameters q,p:

Step 1. (offline) Solve the problem for start parameters q
0
,p

0
(random, complex-valued.)

↝ Starting problem-solution pairs (q0
,p

0
, λ

0,1), . . . , (q0
,p

0
, λ

0,8).
Step 2. (online) Given new, real-valued parameters q

1
,p

1
, define a parameter homotopy

H(λ; t) = f (λ; (1 − t)q0
+ tq

1
, (1 − t)p0

+ tp
1)

This interpolates (non-linearly) between: H∣t=0 = f(λ;q0
,p

0) and H∣t=1 = f(λ;q1
,p

1).
Now, numerically integrate the ODE system

λ
′(t) = − (∂H

∂λ
)
−1 ∂H

∂t

with initial conditions λ(0) ∈ {λ0,1
, . . . , λ

0,8}
↝ Target problem-solution pairs (q0

,p
0
, λ

1,1), . . . , (q0
,p

0
, λ

1,8).
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Step 2. (online) Given new, real-valued parameters q
1
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, define a parameter homotopy
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+ tp
1)

This interpolates (non-linearly) between: H∣t=0 = f(λ;q0
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0) and H∣t=1 = f(λ;q1
,p

1).
Now, numerically integrate the ODE system

λ
′(t) = − (∂H

∂λ
)
−1 ∂H

∂t

with initial conditions λ(0) ∈ {λ0,1
, . . . , λ

0,8}
↝ Target problem-solution pairs (q0
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, λ
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“Path-tracking”— Numerical Integration via Predictor/Corrector

t ∈ [0, 1]

λ ∈ C3

ti +∆titi

λ(t)

H(λ; t) = f (λ; (1 − t)q0
+ tq

1
, (1 − t)p0

+ tp
1)

λ
′(t) = − (∂H

∂λ
)
−1 ∂H

∂t
(ODE)

H(λ(0); 0) = 0 (IC)

λ(t +∆ti) ← λ(ti) −∆ti ((
∂H

∂λ
)
−1 ∂H

∂t
)
»»»»»»»»»»t=ti+∆ti

(predict)

λ(t +∆ti) ← λ(t +∆ti) − ((∂H
∂λ

)
−1

H)
»»»»»»»»»»t=ti+∆ti

(correct)



Starting parameters and solutions can be found using monodromy as follows:

1. Synthesize a random scene q and camera (R t). Compute associated λ and p.

2. Starting from the problem-solution pair (q,p, λ), track paths back and forth
between other sets of random parameter values. Eventually, you will pick up all
solutions. This is because the space of problem-solution pairs is connected.

Simplest example: monodromy of x
2
= p.

Two important points:

1. The initial monodromy solve only needs to be done once.

2. Monodromy permutes solutions, and structure preserved by these
permutations can be exploited for solving. Taking P3P as an example, the
monodromy permutations preserve a non-trivial partition of solutions, namely

{λ1
, λ

2
, λ

3
, λ

4} ∪ {−λ1
,−λ

2
,−λ

3
,−λ

4}

This means we can track 4 paths instead of 8.

https://youtu.be/wm0Pb7zKwTI
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Parameter homotopy: Remarks and Caveats

▶ Tweak-able subroutines: adaptive stepsize, predictor (Runge-Kutta, Padé, ...), ...

▶ Pretty much everything still works for systems of rational functions.

▶ Assumes input data (“parameters” q,p) are sufficiently generic—for data that are
special or degenerate, the Jacobian could become singular!

▶ In theory, the method can find all isolated solutions to a polynomial system over
the complex numbers. In practice, solutions may get lost due to inherent
limitations of the numerical methods used and floating-point arithmetic.

Implementations:
▶ General-purpose software packages:

▶ Bertini
▶ HomotopyContinuation for Julia language
▶ Macaulay2 (computer algbera system, covered in this talk)

→ Some relevant packages: NumericalAlgebraicGeometry, MonodromySolver.
▶ PHCPack

▶ None of the above are suitable for RANSAC! More specialized libraries:
▶ MiNuS (Ricardo’s talk), plus various derivatives
▶ GPU-HC (Hongyi’s talk)

https://bertini.nd.edu/
https://www.juliahomotopycontinuation.org/
https://www.macaulay2.com/
https://www.macaulay2.com/
https://homepages.math.uic.edu/~jan/PHCpack/phcpack.html
https://github.com/rfabbri/minus
https://github.com/C-H-Chien/Homotopy-Continuation-Tracker-on-GPU
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Five-point essential matrix estimation

D1(E) = . . . = D9(E) = p11
T
Ep21 = . . . = p15

T
Ep25 = ℓ(E) − 1 = 0, (1)

where E is 3 × 3, ℓ is a linear form, and D1, . . .D9 are the Demazure constraints,

2EE
T
E − tr (EET )E = 0. (2)

Q: 15 equations in 9 unknowns: Is that a problem?
A: No! If (p∗

,E
∗) is a random problem-solution pair, we have

rank ( ∂f
∂p

»»»»»»»»
∂f

∂E
)
»»»»»»»»»»(p,E)=(p∗,E∗)

= rank ( ∂f
∂E

)
»»»»»»»»»»(p,E)=(p∗,E∗)

= 9 = #variables.

These rank equations can be used to check that a problem is well-posed (“minimal”)
and that we can use a parameter homotopy based on a full-rank square subsystem of f.
Moreover, the 10 solutions to the subsystem which satisfy the original system
are not connected by monodromy permutations to any excess solutions.
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Software Demo and/or Break Time

▶ Coffee break (3:00 – 4:00 PM). Come ask us questions!

▶ Software tutorial in Macaulay2: 5-point problem with HC.
No installation required! Will run in browser!

▶ Part 2 (4:00 – 4:30 PM): Novel applications

3. 3-view autocalibration w/ partially known intrinsics
4. Point-line absolute pose
5. Radial camera relative pose

https://timduff35.github.io/hococvpr24/5pt.md
https://timduff35.github.io/hococvpr24/5pt.md


3-view Autocalibration

Given: five point triplets in three views, pi ,1 ↔ pi ,2 ↔ pi ,3, 1 ≤ i ≤ 5, w/

λi ,jpi ,j = K(Rj tj)qi , recover K =

⎛
⎜⎜
⎝

f 0 u
0 f v
0 0 1

⎞
⎟⎟
⎠
.

(Porfiri dal Cin, D., et al, CVPR ’24): for 1 ≤ i1 < i2 ≤ 5, 2 ≤ j ≤ 3,

ÂÂÂÂÂK
−1 (λi1,1pi1,1 − λi2,1pi2,1)

ÂÂÂÂÂ
2
−
ÂÂÂÂÂK

−1 (λi1,jpi1,j − λi2,jpi2,j)
ÂÂÂÂÂ
2
= 0.

Q: 21 equations in 18 unknowns — is this a problem?
A: This time, yes! A rank condition fails because the problem is overconstrained:

rank ( ∂f

∂(K, λ)) = 18 < 19 = rank( ∂f

∂p

»»»»»»»»»»

∂f

∂(K, λ))

https://openaccess.thecvf.com/content/CVPR2024/papers/Dal_Cin_Minimal_Perspective_Autocalibration_CVPR_2024_paper.pdf
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Q: 21 equations in 18 unknowns — is this a problem?
A: This time, yes! A rank condition fails because the problem is overconstrained:

rank ( ∂f

∂(K, λ)) = 18 < 19 = rank( ∂f

∂p

»»»»»»»»»»

∂f

∂(K, λ))

https://openaccess.thecvf.com/content/CVPR2024/papers/Dal_Cin_Minimal_Perspective_Autocalibration_CVPR_2024_paper.pdf
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Autocalibration (cont.)

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

q1

q2

q3 q4

q5

Black edge—enforce distance constraint for view-pairs (1, 2) and (1, 3)
Red edge—enforce distance constraint for view-pair (1, 2) only
Green edge—enforce distance constraint for view-pair (1, 3) only

Unlike the case of a well-constrained problem (such as five-point relative pose), for a
square relaxation of deleted equations need not be enforced.
The number of solutions for each relaxation can vary significantly:

ffuv0: min = 16118, max = 119119.

Fountain-P11 Herz-Jesu-P8

Method ∆fg ∆uv ∆s Regt Re ϵR ϵC ∆fg ∆uv ∆s Regt Re ϵR ϵC

Kruppa-6 0.137 0.184 0.022 19.563 2.891 7.061 5.579 0.098 0.112 0.014 14.565 1.112 2.125 1.902
Kruppa-7 0.249 0.204 0.040 28.197 - - - 0.122 0.114 0.040 15.252 - - -
Kruppa-8 0.260 0.173 0.029 28.466 - - - 0.140 0.115 0.022 13.606 - - -
Kruppa BnB 0.127 0.058 0.014 9.231 - - - 0.078 0.096 0.018 21.023 - - -
Modulus BnB 0.162 0.071 0.016 10.540 - - - 0.097 0.102 0.019 22.641 - - -

ffuv0 0.017 0.029 - 4.435 0.449 0.623 0.664 0.017 0.044 - 8.082 0.672 0.664 0.656
fguv0 0.028 0.050 - 8.580 0.554 0.970 1.183 0.029 0.063 - 11.128 0.680 1.295 1.540
fguvs 0.035 0.064 0.008 9.769 1.075 1.274 1.428 0.041 0.058 0.013 11.348 0.989 1.085 1.139

https://openaccess.thecvf.com/content/CVPR2024/papers/Dal_Cin_Minimal_Perspective_Autocalibration_CVPR_2024_paper.pdf


Absolute Pose with points and lines

Given p 3D-2D point correspondences, and l 3D-2D line correspondences, recover the
calibrated camera that produced them. We get a minimal problem when p + l = 3.
Monodromy permutations were computed for all four minimal problems,
(D., Korotynskiy, Pajdla, Regan, SIAM J. Appl. Alg. Geom., 2023)

Problem p l # solutions/C monodromy group hidden symmetry?

P3P 3 0 8 S2 ≀ S4 ∩ A8 yes

P2P1L 2 1 4 S2 ≀ S2 yes

P1P2L 1 2 8 S2 ≀ S4 ∩ A8 yes

P3L 0 3 8 S8 no

https://epubs.siam.org/doi/10.1137/21M1422872


Absolute Pose with Points and Lines (cont.)

Prior work (Ramalingam et al., ICRA ’11)
proposed degree-4 / degree-8 solvers for
P2P1L / P1P2L. Although we do not
theoretically prove that our solutions are of
the lowest possible degrees, we believe...

Can symmetries detected by monodromy
lead to a practical symbolic solver?

Yes—(Hruby, D., Pollefeys, CVPR 2024).

Method Avg. Min Max

P2P1L Ours 314 231 3061
P2P1L Poselib 1861 1439 10102
P2P1L Ramalingam 8898 5805 49984

P1P2L Ours 504 364 4554
P1P2L Poselib 1967 1484 12931

Table: Solver timings in nanoseconds

Method Avg. Rerr Avg. trel
P2P1L Ours 5.3e-12 3.7e-10
P2P1L Poselib 2.8e-05 2.0e-05
P2P1L Ramalingam 4.7e-07 2.3e-05

PP1P2L Ours 1.2e-07 2.0e-06
P1P2L Poselib 3.3e-05 3.4e-05

Table: Average solver errors (Rerr in radians.)

https://ieeexplore.ieee.org/document/5979781
https://www.robots.ox.ac.uk/~vgg/data/merton.c/README
https://openaccess.thecvf.com/content/CVPR2024/supplemental/Hruby_Efficient_Solution_of_CVPR_2024_supplemental.pdf
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That was nice...
But what about problems where homotopy continuation is needed as a solver?

(Hruby, Korotynskiy, D.,
Oeding, Pollefeys, Pajdla,
Larsson, CVPR 2023) The
minimal relative pose problem for
calibrated radial cameras has 3584
(complex) solutions, but can be
solved by tracking just 28 paths.

https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Hruby_Four-View_Geometry_With_Unknown_Radial_Distortion_CVPR_2023_paper.pdf
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Projective geometry for
radially-distorted, non-pinhole
cameras.

(Pollefeys, Thirthala, ’09) A radial
camera is a surjective, projective
linear map A ∶ P3

⇢ P1
.

Assume image distortion is radially symmetric about
some known origin—WLOG [0 ∶ 0 ∶ 1] ∈ P2

.
Distorted points move along radial lines.

span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜
⎝

a1
a2
a3

⎞
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⎠
q,

⎛
⎜⎜
⎝

0
0
1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=P2

span
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⎛
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⎝

a1
a2
03

⎞
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⎠
q,

⎛
⎜⎜
⎝

0
0
1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∴ q ↦ (a1
a2
)q

A pinhole camera determines a radial camera—simply
drop the last row of the camera matrix!
In other words, we may relax the pinhole model by
considering only constraints on radial lines.

https://people.inf.ethz.ch/pomarc/pubs/ThirthalaIJCV09subm.pdf


Consider four pinhole projections
of a common 3D point,

Aiq = λipi , i = 1, . . . , 4.

Let R(A1), . . . ,R(A4) denote the
associated radial cameras.

⎛
⎜⎜⎜⎜⎜⎜
⎝

R(A1) p1
R(A2) p2
R(A3) p3
R(A4) p4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q
−λ1

−λ2

−λ3

−λ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 08×1

⇒ det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R(A1) p1
R(A2) p2
R(A3) p3
R(A4) p4

⎞
⎟⎟⎟⎟⎟⎟
⎠
= 0.

This is a quadrilinear form in the P1
-image

coordinates, represented by the 2 × 2 × 2 × 2 radial
quadrifocal tensor. These are very special tensors
with special internal constraints: they parametrize a
13-dimensional space Y ⊂ P2×2×2×2−1

= P15
. They

also must satisfy complicated internal
constraints—see (Lin-Sturmfels, J. Alg. ’09).

https://en.wikipedia.org/wiki/Salomon_Trismosin
https://www.sciencedirect.com/science/article/pii/S0021869309004335


For either calibrated or uncalibrated radial cameras, 13 matches are minimal:

13 = 4 ⋅ (4 ⋅ 2 − 1) − (4 ⋅ 4 − 1) = 4 ⋅ (3 + 2) − 7.

Parametric polynomial system

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R(A1) pi ,1
R(A2) pi ,2
R(A3) pi ,3
R(A4) pi ,4

⎞
⎟⎟⎟⎟⎟⎟
⎠
= 0, i = 1, . . . , 13.

Number of solutions?

1. 3584 = 2
7 ⋅ 28 in calibrated cameras

2. 56 = 2 ⋅ 28 in uncalibrated cameras

3. 28 in quadrifocal tensors

Parameter homotopies give us “the best of both worlds”: we can use the simple
equations above describing (1)–(2), but only need to track 28 paths as in (3).

https://www.youtube.com/watch?v=nDMIuuO_PQo


For either calibrated or uncalibrated radial cameras, 13 matches are minimal:

13 = 4 ⋅ (4 ⋅ 2 − 1) − (4 ⋅ 4 − 1) = 4 ⋅ (3 + 2) − 7.

Parametric polynomial system

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R(A1) pi ,1
R(A2) pi ,2
R(A3) pi ,3
R(A4) pi ,4

⎞
⎟⎟⎟⎟⎟⎟
⎠
= 0, i = 1, . . . , 13.

Number of solutions?

1. 3584 = 2
7 ⋅ 28 in calibrated cameras

2. 56 = 2 ⋅ 28 in uncalibrated cameras

3. 28 in quadrifocal tensors

Parameter homotopies give us “the best of both worlds”: we can use the simple
equations above describing (1)–(2), but only need to track 28 paths as in (3).

https://www.youtube.com/watch?v=nDMIuuO_PQo


Final Thoughts

Homotopy continuation isn’t currently the method of choice for solving (minimal)
geometric estimation problems in vision. But there are reasons to be optimistic:

1. Scales better to problems with more solutions than symbolic methods.

2. Not all applications require RANSAC runtimes (example: autocalibration.)

3. Still can be useful for other reasons:
▶ Designing other solvers (example: point-line absolute pose.)
▶ “Fallback” methods for traditional SfM (Fabbri, D., Fan, et al., CVPR 2020).
▶ Measuring algebraic “hardness” of problems.

4. Current and future work improving overall efficiency:

4.1 Learning starting problem-solution pairs (Hruby, D., et al., CVPR 2022).
4.2 Parallelization and GPU

▶ (Chien, Fan et al., CVPR 2022.)
▶ (Ding, Chien, et al., ICCV 2023.)

https://openaccess.thecvf.com/content/CVPR2024/papers/Dal_Cin_Minimal_Perspective_Autocalibration_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Fabbri_TRPLP_-_Trifocal_Relative_Pose_From_Lines_at_Points_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Hruby_Learning_To_Solve_Hard_Minimal_Problems_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Chien_GPU-Based_Homotopy_Continuation_for_Minimal_Problems_in_Computer_Vision_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/ICCV2023/papers/Ding_Minimal_Solutions_to_Generalized_Three-View_Relative_Pose_Problem_ICCV_2023_paper.pdf
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