
Building fast numerical solvers
Homotopy Continuation Tutorial

Ricardo Fabbri Rio de Janeiro State University

Author of MiNuS github.com/rfabbri/minus

Building fast HC solvers
Outline of Talk

Design principles

Predictor-corrector design

• ODE Solving along levelsets: an illustration

• Predictors: design choices for speed

• Correctors: design choices for speed

Code-level optimizations

• MiNuS: A C++ framework for fast homotopy continuation

• Closer-look at key techniques
DALL-E 3 Prompt

“Homotopy Paths on a Square”

Fast Numerical Algorithms
Design Principles

• Speed is of the essence — real-time AR and autonomous cars

• Floating point is powerful

• Continuous modeling to design algorithms — dynamical systems, ODEs, PDEs

• On the rise with GPUs

• Specialize generic algorithms but using a general approach

• Numerical algorithms come too generic

• Simplest possible algorithms = Fast but still too generic

• Smarter algorithms highly constrained by high-speed requirement

Predictor-Corrector design
Tracing levelsets with ODE Integration

• We wish to design a fast solver for a system of nonlinear equations

but for any f in a family —> leads to ODE

• Minimal problem —> square system

• Let us analyze the 1x1 case in

• For any f in the family, we have isolated solutions

ℝ
λ

f(λ)

0

Predictor-Corrector design
Tracing levelsets with ODE Integration

• We may locally trace a curve in the family of systems by introducing an extra variable t

• The value of f will now depend on t

• family f —> H() locallyλ(t), t

t

λ

0

Predictor-Corrector design
Tracing levelsets with ODE Integration

t

λ

0

t

λ H(λ, t) = 0

They may intersect

Near-intersection

High curvature of H

Algorithm may slow or fail

Currently fastest and robust: RK4 and Newton

Predictor-Corrector design
Tracing levelsets with ODE Integration

• We now build a linear approximation:

• This evaluates linear approximation in any direction

• To get ODE for levelset, write

t

• dim ker dH = intersecting branches

Predictor-Corrector design
Tracing levelsets with ODE Integration

t

• dim ker dH = intersecting branches

• Linear approximation dH to our H gets singular

• Curvature of embedding function H gets complicated

• Rank/Condition number/determinantal conditions

• Simple numerical methods fast but slow down here

• Near high-curvature, fast convergence neighborhood shrinks

• Adaptive stepsize —> simple is too simple

Near-intersection

cusp

Fast Homotopy Continuation
Code-level optimizations

• MiNuS — C++ Framework for fast HC solvers

• Large trifocal problem 200x faster than generic

• Hardcoded evaluators

• Faster linear algebra

1. Highly optimized LU from Eigen, e.g. with specialized partial pivoting

2. Eigen vectorization finely activated for LU decomposition —> very fast

3. Vectorization of evaluators fine-tested on compilers

• No dynamic allocations — static vectors

Runtime
Evaluators

66%

Linear Algebra
34%

github.com/rfabbri/minus

http://github.com/rfabbri/minus

— End of Part 1 —

See part 2: Building fast numerical continuation solvers

